Mono for Game Developers

Agenda

Mono in Games

Using Mono for Games

Performance

Garbage Collection

Co-routines, Asynchronous Programming

JavaScript

Ruby

Python

Visual Basic

e Mixed Code:

— C/C++ engine
— C# scripting/Al
— C# high-level

e Visual Studio + Mono

* X86, PS3, Xbox360

Bastion — on Google Chrome NaCl

C# XNA codebase

Originally on Xbox

Ported to NativeClient
— Mono

— MonoGame (XNA)

Mac, Windows, Linux

Pure C# - SoulCraft

* DeltaEngine
— Pure C# engine

— Open source
— Android, iOS, Mac, Win

Unity 3D

* Unity Engine
— C/C++ game engine
— Embedded Mono
* User code
— C# or UnityScript
— Extends Unity itself

SecondLife

Mono on the server
Powers LSL scripts
Nice 200x perf boost
Code Injection

Infinite Flight

e Subject of the second

part of this session y

WHY MONO?

Because Life is too Short

* To debug another memory leak

* To track another memory corruption bug

 Because you deserve better

The Quest for Productivity

System Languages

Pros:

 Low-level

 Good control of hardware
e Typed

* Fast code

Cons:
Easy to corrupt state
Low productivity
Crash often
Complex for newcomers

Scripting Languages

Pros:

High-level, good productivity
Easy to write

Safe, prevent crashes
Loosely typed

Cons:

Poor control of hardware
Slow (interpreted)

John Ousterhout Scripting Quest
IEEE 1998 Summary Paper

Database application
(Ken Corey)

Computer system test and installation
(Andy Belsey)

Query dispatcher
(Paul Healy)

Simulator and GUI
(Randy Wang)

C++ version: 2 months
Tcl version: 1 day

C test application:
272,000 lines, 120 months
C FIS application: 90,000 lines,
60 months
Tcl/Perl version: 7,700 lines,
8 months
C++ version: 2-3 months
Tcl version: 1 week
C version: 3,000 lines
Tcl version: 300 lines
C version: 3 months
Tcl version: 2 weeks
C version: 1,200 lines, 4-8 weeks
Tcl version: 500 lines, 1T week

C version: 1,460 lines
Tcl version: 380 lines

Java version: 3,400 lines, 3-4 weeks

Tcl version: 1,600 lines, <1 week

http://www.stanford.edu/~ouster/cgi-bin/pdpérs/3crigtivgisdf

C++ version
implemented first; Tcl version

C version implemented first;
Tcl/Perl version replaced both
C applications

C version implemented first,
uncommented:; Tcl version had

Tcl version had 10 to 20 percent
more functionality and was
implemented first

John was always ahead of his time

* Professional workstations in 1998
— SPARC, HP-PA

* Not achievable on PCs of the time

2000 — Desktop Development

Building desktop apps with C and C++
— Slow progress, error prone, frequent crashes

Windows 2000 Requirements:
— 133 Mhz or more
— 64 megs for desktop, 256 for server

Windows XP Requirements (one year later)
— 233Mhz or more
— 128 megs for desktop

Development desktops at the time:
— ~1Ghz speed
— ~1 GB of memory

C# Introduced in 2000

e C# 1.0 was a Java-like system

 With many design fixes
— 10 years of experience
— Change defaults (all virtual, vs opt-in virtual)
— Introduce structs (help GC, no boxing)
— Direct access to native libraries (P/Invoke)
— Delegates (foundation for lambdas)

Language Choices

A Fully Dynamic

m

Q)

wn
<

CH#/Java

>
e
>
5
O
)
O
o
Pt
(ol

Performance

Game Software Components

The Problem

Games are real-time programs

e 30 to 60 frames per second (0.016 seconds)

(Input) (Al) (Updates)

e User control Scripted, slow * Render Graphics
* Network » * React to » * Play audio
events change

* Update scene

LB B B B B R B B N BN B O D O O B B O B B O e B B BB BB BB BB BN BB O BN B BB BN B B BN B B BN B B B BN B B BN B B O BN B O B BN B O B B O D B O O B B N B BN A

Problem: Scripting Is A Bottleneck
Gaming's Achilles' Heel

C/C++ C/C++ Script C/C++

Problem: Scripting Is A Bottleneck

i(i

Gaming's Achilles' Heel

c/C++ C/Crt c/CH+

What C# Offers

* Close to native performance
— 50%-90% of native performance

e Safe Execution Environment

— With optional support to shoot yourself in the
foot.

- An Evolving Language

2012 ‘ Asynchronous Programming

2010 © 4.0 Dynamic extensions
2007 ¢ 3.0 Language Integrated Query, Functional
2005 ¢ 2.0 Generics, Iterators, Lambdas

2002 © 1.0 Managed Code, strongly typed

Designing Mono Applications

 Provided:
— CH Language
— Base Class Libraries

* Not Provided:

— User Interface, Graphics, Audio
— These are all platform specific

Code Sharing and Native Experience

CH#

Core Engine, Shared Logic, Business Logic
Plus ECMA languages

Runtime

Windows

(O8N Xbox i Android
WinPhone

Not a comprehensive list

Code Sharing and Native Experience

Native Ul

MonoTouch MonoDroid
APIs

CH#

Core Engine, Shared Logic, Business Logic
Plus ECMA languages

Runtime

Windows

(O8N Xbox i Android
WinPhone

Not a comprehensive list

Modes of Use

* Drive the application
* Scripting engine

— Sandboxed

— Full access

Run on Mono

ass AstroHunt : Game {
static void Main ()

InitNetwork ();
InitGraphics ();

1ew AstroHunt ().Start Q);

Run on Mono

Game — Your C# Code

\

Mono C#/.NET Libraries

Runtime
. y,

Using Mono as a Library

int main O

{
InitEngine ();
domain = mono_jit_init_version ("myapp", "v2.0.50727");
mono_add_internal_call ("GameObject::Move", game_object_move);
mono_add_internal_call ("GameObject::Explode", game_object_explode);
assembly = mono_domain_assembly_open (domain, "scripts.exe");
StartEngine ()ﬂ

oid run_frame_scripts (void *script, void **params)

MonoException *exception;
mono_runtime_invoke (run_scripts_for_frame, script, params, &exception);

oid game_object_move (GameObject *obj)

Use Mono as a Library

CEINERAE

N [

Game Engine Libraries Mono

J \\

N\ £ N\ [

Game — Your

Audio Graphics C# Code

TIPS ON USING MONO

Two Code Generation Backends

Mono’s Native Backend LLVM Backend

* Very fast codegen * Very slow codegen

— .3 seconds bootstrap — 7 second bootstrap

* Not great code output * Great output quality

* JIT's default engine Opt-in:
— mono --1lvm

Just in Time vs Ahead of Time

e Justin Time Compilation
— Default Mode of Operation
— Very fast at compiling code
— Not great quality of code generation

* Ahead of Time Compilation

— Mandatory on some platforms
* PS3, XBox360, i0S

— Can afford expensive compiler optimizations

Arrays Bounds Checking

for (int 1 =0; 1 < 10; 1++)
mesh [1].x += delta;

Mono Runtime translates this to:

for (int 1 =0; 1 < 10; 1++){
1f (1 <© Il 1 > mesh.Length)
throw new IndexOutOfRangeException ();
mesh [1].x += delta;

Disabling Arrays Bounds Checking

* Very unsafe
— GC depends on system integrity
— But admissible if no error ever found on testing

 We give you the tools to shoot your feet
—mono -0O=unsafe

* Ask your QA team

GARBAGE COLLECTION

Mono’s Garbage Collectors

e Boehm GC:
— Traditional Mono GC
— Mostly-precise, stack conservative
— Scans everything on each GC

* Generational Collector (SGen)
— New (default on Android)
— Generational (Old generation, nurseries)
— Copying (plus mark+sweep for large objects)

Nursery

e New objects
e Small size (4MB)
e Per thread regions

e \ery fast
collection

e Aged objects
e Slower collection

ixed or variable
neaps

Parallel collection

Garbage Collection

Memory Allocated Released later

Garbage Collector determines when to run and release memory

* Heuristics are platform-specific
e GC.Collect() is the only deterministic option

Best Practices

* Pre-allocate major objects before Game Loop
— Managed objects
— Or unmanaged buffers
— Try to only use the nursery (stay under 4M)

— |f you must collect, only collect the nursery:
e GC.Collect (0) — Performs only a nursery collection
e GC.Collect () — Performs a complete GC on the heap

* On Main loop:
— Use structs instead of classes

Schedule GC Collection

\ N \
GC.Collect (0)
Limit Collection to Nursery

Mono’s GC Thread Control

* Garbage Collection Stops all Mono Threads
* Non-Mono threads are not affected

* Alternative:
 Use a Render Scene + Render Thread
e Like Apple’s CoreAnimation or Microsoft WPF

Game Network
Thread Thread

-l

Mono IO Thread

l Render] [Real Time l [Mono Thread]

Thread Thread 1

[Native Thread]

COROUTINES

State-based programming

AlienShip (O

switch (state){
case State.ActivePatrol:
if (PlayerIsInRange){
SetSprite ("attacking");
state = State.Chase;
} else if (ReachedEdge)
state = State.PerformSpin;
else if (--alert_state == 0){
state = State.PassivePatrol;
}
reak;
case State.Chase:
if (!PlayerIsInRange)
state = State.ActivePatrol;
else {
direction = GetDirection (player);
SetDirection (direction);
¥

|/ -
ak,

case State.PassivePatrol:

\"
K,

Problems with Callbacks and State-Machines Systems
Repetitive
Cumbersome

Error Prone

Poor Error Propagation protocols/practices

Life is too short

Co-routines

* Popular solution to simplify Al code

 Each Game Object has a script attached

— Runs Game Logic
— Al bits

 Many solutions

— longjmp/setjmp for unmanaged code
— Stack fiddling (Mono.Tasklets)
— Interpreted languages with VM support

C# 5.0 and Async Programming

* Mono master has a complete C#5 Compiler

* Turns repetitive callback-based async
programming into linear programming

— Compiler rewrites the code into a state machine
— Tasks are scheduled on the main thread
— Scheduling is customizable

Originally designed for interactive Uls

Using Await

async void AlienShip ()
{
le ()
while (PlayerIsInRange){
await SetSprite ("attacking");
direction = GetDirection (player);
SetDirection (direction);

- (--alert_state > 0)
await PassivePatrol ();

1f ((ReachedEdge)
await PerformSpin ();

The Magic

* Await lets you write linear code

* Lets you focus on the problem

— The compiler is at your service

* Microsoft conventions for responsive Uls:
— If it takes more than 50ms, make it async

More on awalt

 awailt introduces a suspension point
— Code returns to caller
— Execution resumes after “await” instruction
— Very cheap memory-wise

 Works with 10, Networking stacks, slow code
— System.10, System.Net, Database access
— Slow processing: XML, Json data
— Blends transparently with Threads on multi-cores

Little more interesting

async Task<int> KillEnemiesInRange (IShooter source)
{

List<Enemy> enemies;

int casualties = 0;

((enemies = GetEnemiesInRange (source)) !=
(var enemy enemies){
if (!source.Alive)
casualties;

await RotateTowards (enemy.Position);
if (IsEnemyInRange (enemy)){
11 (enemy.Alive){
if (await Shoot (enemy).Power ==
await enemy.Destroy ();
casualties++;
} else {
await StartAnimation ("reload", delay=3.0);
it (ememy.Alive && Distance (source, enemy) > 0)
await MoveTowards (enemy.Position);

casualties;

Current Trends in Async Programming

Callback based

Where:

* GUI programming

* Scalable web servers

* Responsive mobile and desktop applications

d DownloadTweets ()

FetchUrl (tweetUrl, result => {
tweetDb.Populate BEiRe@ JsonResult (result), OO => {

void result

View.ReloadData ();
)5
bl

With some error handling.

DownloadTweets ()

FetchUrl (tweetUrl, result => {
if (result ==)
View.InvokeOnMainThread (delegate {
ShowError ("Could not download tweets");
3
tweetDb.Populate (ParselsonResult (result), (error) => {
if (Cerror){
Tweet.UpdateLastRead (lastValidCode, errorPost => {
if (errorPost) ‘
View.Invokehread (delegate {
ShowError ("twitter is down");
3);
3);
} else {
View.BeginInvokeOnMainThread (
View.ReloadData ();
lastValidCode = currentCode;

5

C# 5.0 Async Support

async void DownloadTweets ()
{
var tweets = await FetchUrl (tweetUrl);
if (DownloadTweets ==){
ShowError ("Could not download tweets");

')

}
1f ('await tweetDb.Populate (ParselsonResult (result))){

1f (!await Tweet.UpdateLastRead (lastValidCode))
ShowError ("Twitter is down");
} else {
View.ReloadData ();

H

Q&A

Mono, ISO Standard, C# Async
— http://www.mono-project.com
— |ISO Standard: http://bit.ly/cli-iso-standard
— C#t Async: http://msdn.microsoft.com/en-us/vstudio/gg316360

Xamarin, Mono on iOS, Android:
— Discount for AltDevConf attendees:
— http://www.xamarin.com/altdevconf

Contact:
— miguel@xamarin.com, @migueldeicaza

Resources:
— @MonoGameTeam, @Unity3D

Live Chat on IRC: irc.gnome.org
— #mono, #monotouch, #monodroid, #monogame

BACKUP SLIDES

lterators

C# compiler provided assistance
— Built on top of C# IEnumerable
— C# compiler rewrites iterators into state machines

Developers build on top of conventions
Unity3D uses this approach

Open Source Iterator game framework:

— http://mjhutchinson.com/journal/2010/02/01/iteratorbased_microthreading

lterator based code

IEnumerable AlienShip (O

¢ PLi
lhile (PlayerIsInRange){

SetSprite ("attacking");

yield turn 0;

direction = GetDirection (player);
SetDirection (direction);

. (--alert_state > 0){

yield turn 0;
Iy
if (ReachedEdge){
PerformSpin ();
yield ' Q;

Mono.Tasklets

* Pros:
— No need to rewrite code

— You can suspend execution/resume without new
conventions.

* Cons:
— Not available on every platform — Stack Fiddling
— Does not work with Mono’s new Precise GC
— In particular, wont work with Microsoft .NET

GAME ENGINES USING CH#

Qunity3

* Commercial Engine

* Very extensive support:
— Consoles: XBox360, PS3, Wii
— i0S, Android
— Mac, Windows
— Google Native Client
— Flash target

MonoGame — Open Source XNA

* Open Source XNA implementation
— Currently 2D-based
— 3D support coming

* Runs on many platforms:
— iOS (iPhone, iPad)
— Android (phones and tablets)
— Linux
— Mac
— Windows

Delta Engine

* Open Source Game Engine
* Written 100% in C#

* Runs on:
— Android
— Windows Phone
O8]
— Mac
— Windows

Axiom

Open source

Based on the OGRE C++ Engine
Windows, Linux

XNA, DirectX and OpenGL support

- Fascinating Language

— Blog tracking the experiences of game
development using F#

* F# introduced Async
— Later adopted by C#

Architecture

 Computer Architecture — A Quantitative
Approach

e Unix Systems for Modern Architectures
— It says “Unix”
— But applies to low-level systems engineering
— Caches, MMUs, performance
— Hardware Architectures design

